Rapid Detection of Aeromonas hydrophila in Tilapia Samples Using Loop-Mediated Isothermal Amplification (LAMP) Targeting the Aerolysin Gene
DOI:
https://doi.org/10.22137/ijst.2023.v8n1.02Keywords:
Aeromonas hydrophila, aerolysin gene, LAMP assay, PCR assay, Primer ExplorerAbstract
Aeromonas hydrophila is a notorious pathogen in tilapia aquaculture, often linked to fish kills due to its virulence gene, aerolysin. Economic losses globally underscore the urgency for effective disease diagnosis. While PCR is the gold standard, its complexity limits field use. Thus, this study aimed to develop a sensitive, specific, and field-friendly detection kit using Loop-Mediated Isothermal Amplification (LAMP). Bacterial isolates from 12 farms across Luzon were collected and tested. LAMP primers, validated through parallel PCR testing, showed 100% accuracy, sensitivity, and specificity. The optimized incubation conditions (63°C for 1 hour) facilitated rapid and reliable detection. Notably, LAMP's simplicity and shorter processing time offer advantages over PCR, obviating the need for sophisticated equipment and highly skilled personnel. The developed protocol, with its high diagnostic reliability, holds promise for future surveillance of aerA gene-carrying A. hydrophila strains in aquaculture settings.References
Abdelhamed, H., Ibrahim, I., Baumgartner, W., Lawrence, M. L., and Karsi, A. (2017). Characterization of histopathological and ultrastructural changes in channel catfish experimentally infected with virulent Aeromonas hydrophila. Frontiers in Microbiology. (3)1–15.
Aboyadak, I. M., Ali, N. G. M., Goda, A. M. A. S., Aboelgalagel, W. H., and Salam, A. (2015). Molecular detection of Aeromonas hydrophila as the main cause of outbreak in tilapia farms in Egypt. Journal of Aquaculture and Marine Biology. 2(6)2–5.
Baratloo, A., Hosseini, M., Negida, A., and El Ashal, G. (2015) Part 1: Simple Definition and Calculation of Accuracy, Sensitivity and Specificity. Emergency (Tehran). 3(2)48-9. PMID: 26495380; PMCID: PMC4614595.
Baumgartner, W. A., Ford, L., and Hanson, L. (2017). Lesions caused by virulent Aeromonas hydrophila in farmed catfish (Ictalurus punctatus and I. punctatus, I. furcatus) in Mississippi. Journal of Veterinary Diagnostic Investigation. 29(5):747–751.
Bücker, R., Krug, S. M, Rosenthal, R., Günzel, D., Fromm, A., Zeitz, M., Chakraborty, T., Fromm, M., Epple, H. J., andSchulzke, J. D. (2011). Aerolysin from Aeromonas hydrophila perturbs tight junction integrity and cell lesion repair in intestinal epithelial HT-29/B6 cells. Journal of Infectious Diseases. 204(8)1283–1292.
Bebak, J., Wagner, B., Burnes, B., and Hanson, T. (2015). Farm size, seining practices, and salt use: risk factors for Aeromonas hydrophila outbreaks in farm-raised catfish, Alabama, USA. Preventive Veterinary Medicine. 118(1)161–168.
Beaz-Hidalgo, R., Alperi, A., Bujan, N., Romalde, J. L., and Figueras, M. J. (2010). Comparison of phenotypical and genetic identification of Aeromonas strains isolated from diseased fish. Systematic and Applied Microbiology. 33(3)149–153.
Chaix, G., Roger, F., Berthe, T., Lamy, B., Jumas-Bilak, E., Lafite, R., and Petit, F. (2017). Distinct Aeromonas populations in water column and associated with copepods from estuarine environment (Seine, France). Frontiers in Microbiology. (3)1–13.
Chandran, M. R., Aruna, B. V., Logambal, S. M., and Michael, R. D. (2002). Immunisation of Indian major carps against Aeromonas hydrophila by intraperitoneal injection. Fish and Shellfish Immunology. (13)1–9.
De Jagoda, S. S. S., Wijewardana, T. G., Arulkanthan, A., Igarashi, Y., Tan, E., and Kinoshita, S. (2014). Characterization and antimicrobial susceptibility of motile aeromonads isolated from freshwater ornamental fish showing signs of septicaemia. Disease of Aquatic Organisms. 109(2)127–137.
Down, J. A., O'Connell, M. A., Dey, M. S., Walters, A. H., Howard, D. R., Little, M. C., Keating, W. E., Zwadyk, P. Jr., Haaland, P. D., McLaurin, D. A. III, and Cole, G. (1996). Detection of Mycobacterium tuberculosis in respiratory specimens by strand displacement amplification of DNA. Journal of Clinical Microbiology. (34)860-865.
El-Bahar, H. M., Ali, N. G., Aboyadak, I. M., Khalil, S. A. E. S., and Ibrahim, M. S. (2019). Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. International Microbiology. 22(4)479-490. doi: 10.1007/s10123-019-00075-3.
Erdem, B., Kar-Iptas, E., ÇIl, E., and Is-ik, K. (2011). Biochemical identification and numerical taxonomy of Aeromonas spp. isolated from food samples in Turkey. Turkish Journal of Biology. (35)463–472.
Geny, B. and Popoff, M.R., (2006). Bacterial protein toxins and lipids: pore formation or toxin entry into cells. Biology of the Cell. 98(11)667 - 678.
Harikrishnan, R., and Balasundaram, C. (2005). Modern trends in Aeromonas hydrophila disease management with fish. Reviews in Fisheries Science and Aquaculture. 13(4)281–320.
Igbinosa, I. H., Igumbor, E. U., Aghdasi, F., Tom, M., and Okoh, A. I. (2012). Emerging Aeromonas species infections and their significance in public health. Science World Journal. (3)1–13.
Jacobs, L., and Chenia, H. Y. (2007). Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. International Journal of Food Microbiology. 114(3)295–306.
Janda, J. M., and Abbott, S. L. (2010). The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clinical Microbiology Reviews. 23(1)35–73.
Joseph, A. V., Sasidharan, R. S., Nair, H. P., and Bhat, S. G. (2013). Occurrence of potential pathogenic Aeromonas species in tropical seafood, Aquafarms and mangroves off Cochin coast in South India. Veterinary World. 6(6)300–306.
Kong, W., Huang, C., Tang, Y., Zhang, D., Wu, Z., and Chen, X. (2017). Effect of Bacillus subtilis on Aeromonas hydrophila-induced intestinal mucosal barrier function damage and inflammation in grass carp (Ctenopharyngodon idella). Scientific Reports. 7(1)1–11.
Li, Z., Bruce, J. L., Cohen, B., Cunningham, C. V., Jack W. E., Kunin, K. (2022). Development and implementation of a simple and rapid extraction-free saliva SARS-CoV-2 RT-LAMP workflow for workplace surveillance. PLoS ONE. 17(5)e0268692. https://doi.org/10.1371/journal.pone.0268692
Little, M. C., Andrews, J., Moore, R., Bustos, S., Jones, L., Embres, C., Durmowicz, G., Harris, J., Berger, D., Yanson, K., Rostkowski, C., Yursis, D., Price, J., Fort, T., Walters, A., Collis, M., Llorin, O., Wood, J., Failing, F., O'Keefe, C., Scrivens, B., Pope, B., Hansen, T., Marino, K., and Williams, K. (1999). Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clinical Chemistry. (45)777-784.
Omiccioli, E., Amagliani, G., Brandi, G., and Magnani, M. (2009). A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk. Food Microbiology. 26(6)615-22. doi: 10.1016/j.fm.2009.04.008.
Pfyffer, G. E., Funke-Kissling, P., Rundler, E., and Weber, R. (1999). Performance characteristics of the BDProbeTec system for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. Journal of Clinical Microbiology. (37)137-140.
Pongsachareonnont, P., Honglertnapakul, W., and Chasuwan, T. (2017). Comparison of methods for identifying causative bacterial microorganisms in presumed acute endophthalmitis: conventional culture, blood culture, and PCR. BMC Infectious Diseases. 17(1)165. DOI:10.1186/s12879-017-2264-5.
Puthucheary, S. D., Puah, S. M., and Chua, K. H. (2012). Molecular characterization of clinical isolates of Aeromonas species from Malaysia. PLoS One. 7(2)1–7.
Zhao, X., Lin, C. W., Wang, J., Oh, D. H. (2014). Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology. 24(3)297 –312. doi: 10.4014/jmb.1310.10013.