Phytochemical Screening of Fish Poison Tree, Barringtonia Asiatica Seed for Potential Biopesticidal Activity And Pharmaceutical Uses
DOI:
https://doi.org/10.22137/ijst.2020.v4n1.05Keywords:
Fatty acid esters, Fish poison tree, GC-MS, Saponins, TerpenoidsAbstract
The study was conducted to identify the phytochemical contents in the seeds of fish poison tree, Barringtonia asiatica (L.) Kurz. The qualitative and quantitative analysis were ascertained using standard conventional methods and gas chromatography–mass spectroscopy (GC-MS) technique. Phytochemical screening revealed the presence of saponins, alkaloids, cardiac glycosides, flavonoids, terpenoids, coumarin and tannins in the seeds. In addition, the seed contained 42 compounds which includes Vitamin E, (45.89%), fatty acid esters (LAEE, 40.30%; PAEE, 10.24%; (E)-9-ODAEE, 6.73%) and sterols (chondrillasterol, 14.20%; lanosterol, 7.29%; and stigmasterol, 7.02%). Furthermore, chemical components such saponins, alkaloids, and cardiac glycosides present in the seed were found positive for biopesticidal activity. The analysis confirmed that fish poison tree seed is a potential source of bioactive substances that may support pharmaceutical uses and biopesticide production.References
Agarwal, M. & Kamal R. (2007). Studies on flavonoid production using in-vitro cultures of Momordica charantia. Indian Journal of Biotechnology 6(2), 277–279.
Agnihotri, S., Wakode, S., & Agnihotri, A. (2010). An overview on anti-inflammatory properties and chemo-profiles of plants used in traditional medicine. Indian Journal of Natural Products and Resources. 1(2),150–167.
Agoramoorthy, G., Chandrasekaran, M., Venkatesalu, V. & Hsu, M.J. (2007). Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz J Microbiol. 38, 739–742.
Ahmed, E. A., Babiker, O. F., & Abdalla, R. M. (2014). Molluscicidal activity of aqueous leaf extract of Solenostemma argel (Del Hayne) on Biomphalaria pfeifferi Snails. Journal of Basic and Applied Science Research 4(1),179–184.
Bakar, M. F. A., Mohamed, M., Rahmat, A., & Fry, J. (2009). Phytochemicals and antioxidant activity of different parts of bambangan (Maningerapajang) and tarap (Artocarpusodoraitissimus). Food Chem 113:479–483.
Balashova, L. M., Namiot, V. A., Kolesnichenko, I. I., & Udaltsov, S. N. (2018). Lanomax as a drug in cataract treatment: A case study. Biophysics 63(4), 655–651.
Barwick, M. (2004). Tropical and Subtropical Trees: A Worldwide Encyclopedia Guide. Thances and Hudson.
Bibi, G., & Shanmugam, S. (2014). Phytochemical screening and antimicrobial activity of fruit mextract of Sapindus mukorossi. International Journal of Current Microbiology and Applied Sciences 3(10), 604–611.
Bissinger, R., Modicano, P., Alzoubi, K., Honisch, S., Faggio, C., Abed, M., & Lang, F. (2014). Effect of saponin on erythrocytes. International Journal of Hematology 100(1), 51–59.
Brunet, J. M. C., Cetkovic, G. S., Djilas, S. M., Tumbas, V. T., & Savatovic, T.S. S. (2009). Radical scavenging and antimicrobial of horsetail (Equisetum arvense L.) extracts. Int. J. Food Sci. Technology 44, 269–278.
Burton, R. A., Wood, S. G., Owen, N. L. (2003). Elucidation of a new oleanane glycoside from Barringtonia asiatica. Arkivoc 13, 137–146.
Butler, L. G. (1992). Anti-nutritional effects of condensed and hydrolysable tannins. Cancer 3, 768–80.
Chandrasekharan, M., Kannathasan, K., & Venkatesalu, V. (2008). Antimicrobial activity of fatty acid methyl esters of some members of chenopodiaceae. Z Naturforsch C. 63, 331–336.
Chen, J. J., Duh, C. Y., & Chen, I. S. (2005). Cytotoxic chromenes from Myriactis humilis. Planta Med., 71, 370–371.
Correa, P. M. (1984). Dicionário das plantas úteis do Brasil e das exóticas cultivadas. Rio de Janeiro, 2, 108–129.
Dai, L., Wang, W., Dong, X., Hu, R., & Nan, X. (2011). Molluscicidal activity of cardiac glycosides from Nerium indicum against Pomacea canaliculata and its implications for the mechanisms of toxicity. Environmental Toxicology and Pharmacology. 32(2), 226–32.
Edeoga, H, Okwu, D., & Mbaebie, B. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology 4(7):685–688.
Ee, G. C. L., Lim, C. M., Rahmani, M., Shaari, K., & Bong, C. F. J. (2010). Pellitorine, a potential anti-cancer lead compound against HL60 and MCT-7 cell lines and microbial transformation of piperine from Piper nigrum. Molecules 15(4), 2398–2404.
Elekofehinti, O. (2015). Saponins: Anti‐diabetic principles from medicinal plants—A review. Pathophysiology 22, 95–103. https://doi.org/10.1016/j.pathophys.2015.02.001
Evans, W. C. (1996). Pharmacopoeial and related drugs of biological origin. Alkaloids. In E. Trease & W. C. Evans (Eds.), Trease and Evans' Pharmacognosy (14th ed.). G. W. B. Saunders.
Farnsworth, N. F. (1966). Biological and phytochemical screening of plants. Journal of Pharmaceutical Sciences. 55, 225–276.
Fethi, B. J., Mohamed, A. M., Samia, A. M., Karima, B. S., Ahmed, N. H., & Zine, M. (2012).
Chemical composition, in vitro antifungal and antioxidant activities of essential oil from Cotula coronopifolia L. growing in Tunisia. Africal Journal of Microbiology Research 6 (20), 4388–4395.
Gallo, M. B. C., & Sarachine, M. J. (2009). Biological activities of lupeol. Int. J. Biomed. Pharmaceut. Sci. 3, 46–66.
Geetha, T., & Varalakshmi, P. (2001). Anti-inflammatory activity of lupeol and lupeol linoleate in rats. J. Ethnopharmacol. 76:77–80.
Godlaski, T. M. (2011). “Gods of drugs: the God within.” Substance use and misuse. 46(10): 1217–1222.
Güçlü‐Ustündağ, O., & Mazza, G. (2007). Saponins: properties, applications and processing. Critical Reviews in Food Science and Nutrition. 47(3):231‐258.
Gupta, R., Sharma, A. K., Dobhal, M. P., Sharma, M. C., & Gupta, R. S. (2011). Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. Journal of Diabetes 3, 29–37.
Hamdan, D., El-Readi, M. Z., & Tahrani A. (2011). Secondary metabolites of ponderosa lemon (Citrus pyriformis) and their antioxidant, anti-inflammatory, and cytotoxic activities. Zeitschrift fur Naturforschung C. 66(7–8), 385-393.
Itoh, T., Kikuchi, Y., Tamura, T., & Matsomoto, T. (1981). Co-occurrence of chondrillasterol and spinasterol in two Cocurbitaceae seeds as shown by13C NMR. Phytochemistry. 20,761–764.
Jianshe, H., Xiaoyan, L., Mingjun, Z., & Si, Z. (2004). A survey of the chemical constituents and pharmacological activities of mangrove medicinal plant (Barringtonia). Natural Product Research and Development 16(2), 167–171.
Kagan, V. E. (1998). Recycling and redox cycling of phenolic antioxidants. Annals of the New York Academy of Sciences 854, 425–434.
Kelly R. A. (1990). Cardiac glycosides and congestive heart failure. American Journal of Cardiology. 65, 10–16
Kelly, G. S. (1999). Squalene and its potential clinical uses. Alternative Medicine Review 4(1), 29–36.
Khan, M. R., & Omoloso, A. D. (2002). Antibacterial, antifungal activities of Barringtonia asiatica. Fitoterapia 73(3), 255–260.
Khakimov, B., Motawia, M. S., Bak, S., & Engelsen, S. B. (2013). The use of trimethylsilyl cyanide derivatization for robust and broad-spectrum high-throughput gas chromatography-mass spectrometry based metabolomics. Anal. Bioanal. Chem. 405, 9193–9205.
Khakimov, B., Tseng, L. H., Godejohann, M., Bak, S., & Engelsen, S. B. (2016). Screening for triterpenoid saponins in plants using hyphenated analytical platforms. Molecules 21, 1614-1632.
Kujumgiev, A., Bankova, V., Ignatova, A. & Popov, S. (1993). Antibacterial activity of propolis,some of its components and their analogs. Pharmazie 48, 785–786.
Kumar, B., Vijayakumar, M., Govindarajan, R., & Pushpangadan, P. (2007). Ethnopharmacological approaches to wound healing-exploring medicinal plants of India. Journal of Ethnopharmacology 114(2), 103–113.
Kumar, S. & Pandey, A. K. (2012). Antioxidant, lipo-protective, and antibacterial activities ofphytoconstituents present in Solanum xanthocarpum root. International Review of Biophysical Chemistry. 3(3), 42–47.
Kroes, B. H., Van Der Berg, A. J. J., Quarles Van Ufford, H. C., Van Dijk, H., & Labadie, R. P. (1992). Anti-inflammatory activity of gallic acid. Plants Med. 58, 499–504.
Leal, L. K. A. M., Ferreira, A. A. G., Bezerra, G. A., Matos, F. J. A., & Viana, G. S. B. (2000). Anticonceptive, anti- inflammatory, and bronchodilator activities of Brazilian medicinal plants containing coumarin: a comparative study. Journal of Ethnopharmacology. 70(2), 151–159.
Lima, L. A. R., Johann, S., Cisalpino, P. S., Pimenta, L. P. S., Boaventura, M. A. D. (2011). In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A.St.-Hil. (Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis. Revista da Sociedade Brasileira de Medicina Tropical 44(6):777-780. https://doi.org/10.1590/S0037-86822011000600024
Marrelli, M., Conforti, F., Araniti, F., & Statti, G. A. (2016). Effects of saponins on lipid metabolism: A review of potential health benefits in the treatment of obesity. Molecules 21(10), 1404-1423. doi: 10.3390/molecules21101404
Marston, A. & Hostettmann, K. (1991). Plant saponins: Chemistry and molluscicidal action. In J. B. Harbome & P. M. Dey (Eds.), Ecological Chemistry and Biochemistry of Plant Terpenoids. Proceedings of the Phytochemical Society of Europe Vol. 31, pp. 264–286. Clarendon Oxford.
Martin, T. & Gutow, L. (2005). The ecology of rafting in the marine environment. The floating substrata. Oceanography and Marine Biology: An annual review 42, 181–264.
Metwally, N. S. (2006). Potency of Allium sativum L. and Allium cepa oils against Schistosoma mansoni infection in mice. The Egyptian Journal of Hospital Medicine. 23, 319–332.
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., & Nichols, D. J. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica 45(5), 31–34.
Mikail, H. G. (2010). Phytochemical screening, elemental analysis and acute toxicity of aqueous extract of Allium sativum bulbs in experimental rabbits. Journal of Medicinal Plant Research. 4(4), 322–326.
Mojica, E. R., Micor, J. R. L. (2007). Bioactivity study of Barringtonia asiatica (Linnaeus) Kurz seed aqueous extract in Artemia salina. International Journal of Botany 3(3), 325–328.
Mozirandi, W., Tagwireyi, D., & Mukanganyama, S. (2019). Evaluation of antimicrobial activity of chondrillasterol isolated from Vernonia adoensis (Asteraceae). BMC Complementary Medicine and Therapies.
Mutai, C., Abatis, D., Vagias, C., Moreau, D., Roussakis, C., & Roussis, V. (2004). Cytotoxic lupane-type triterpenoids from Acacia mellifera. Phytochemistry 65, 1159–64.
Mwine, J., Ssekyewa, C., Kalanzi, K., & Van Damme, P. (2013). Evaluation of selected pesticidal plant extracts against major cabbage insect pests in the field. Journal of Medicinal Plants Research 7(22),1580–1586.
Na, M., Kim, B. Y., Osada, H., & Ahn, J. S. (2009). Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta. J Enzyme Inhib Med Chem. 24, 1056–1059.
Navarro-García, V. M., Luna-Herrera, J., Rojas-Bribiesca, M. G., Álvarez-Fitz, P., & Ríos, M. Y. (2011). Antibacterial activity of Aristolochia brevipes against multidrug-resistant Mycobacterium tuberculosis. Molecules 16(9), 7357–7364.
Newmark, H. L. (1997). Squalene, olive oil, and cancer risk: A review and hypothesis. Cancer Epidemiology Biomarkers and Prevention 6, 1101–1103.
Panda, S., Jafri, M., Kar, A., & Meheta, B. K. (2009). Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia 80, 123–126.
Picardal, M. T., Panlaan, K. T., Castaño, P. M. L., Peña, L. G., Abella, K.T., & Picardal, J.P. (2018). Molluscicidal activity of the aqueous extract of garlic (Allium sativum L.) bulb against golden apple snail (Pomacea canaliculata L.). International Journal of Bioscience 13(2), 75–87. http://dx.doi.org/10.12692/ijb/13.2.75-87
Pradeep, A., Dinesh, M., Govindaraj, A., Vinothkumar, D., & Ramesh, N. G. (2014). Phytochemical analysis of some important medicinal plants. International Journal of Biological and Pharmaceutical Research. 5(1), 48–50.
Prance, G. (2012). A Revision of Barringtonia (Lecythidaceae). Allertonia 12, 1–161.
Prohp, T. P. & Onoagbe, I. O. (2012). Determination of phytochemical composition of the stem bark of Triplochiton scleroxylon K. Schum (Sterculiaceae). International Journal of Applied Biology and Pharmaceutical Technology 3(2), 68–76.
Rasoanaivo, L. H., Wadouachi, A., Andriamampianina, T. T., Andriamalala, G. S., Jeannot, E. B., Raharisololalao, A. (2014). Triterpenes and steroids from the stem bark of Gambeya boiviniana Pierre. J Pharmacogn Phytochem 3, 68–72.
Ravikumar, T., Nagesh-ram, Dam-Roy, S., Krishnan, P., Grinson-George, Sankaran, M., & Sachithanandam, V. (2015). Traditional usages of ichthyotoxic plant Barringtonia asiatica (L.) Kurz. Journal of Marine and Island Cultures 4(2), 76–80.
Reddy, L. H. & Couvreur, P. (2009). Squalene, A natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev. 61 (15), 1412–26.
Ross, I. A. (2003). Medicinal plants of the world: Chemical constituents, traditional, and modern medicinal uses (Vol. 1). Humana Press.
Saleem, M. (2009). Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 285, 109–115.
Salman, Z., Mohdazizi, C. Y., Niknorulaini, N. A., & Mohd Omar, A. K. (2006). Gas chromatography/time-of flight mass spectrometry for identification of compounds from Parkia speciosa seeds extracted by supercritical carbon dioxide. In Proceedings of the First International Conference on Natural Resources Engineering & Technology (pp. 112–120), Putrajaya, Malaysia.
Sheel, R., Nisha, K., & Kumar, J. (2014). Preliminary phytochemical screening of methanolic extract of Clerodendron infortunatum. IOSR Journal of Applied Chemistry 7(1), 10-13.
Smith, T. J. (2000). Squalene: potential chemopreventive agent. Expert Opinion onInvestigational Drugs 9(8), 1841–1848.
Smith, R. L., Cohen, S. M., Doull, J., Feron, V. J., & Goodman, J. I. (2005). A procedure for the safety evaluation of natural flavor complexes used as ingredients in food: Essential oils. Food Chemistry and Toxicology 43, 345–363.
Sri Murni, A., Mimi Sakinah, A. M., Retno Andayani, B. M., & Awalludin, R. (2011). Determination of saponin compound from Anredera cordifolia (ten) steenis plant (Binahong) to potential treatment for several diseases. Journal of Agricultural Science 3 (4), 224-232 doi:10.5539/jas.v3n4p224
Stuart, Jr., G. U. (2018). Philippine Medicinal Plants: Boton. Stuart Xchange. http://www.stuartxchange.org/Botong.html
Tan, R. (2001). Sea poison Tree. Mangrove and wetland wildlife at Sungei Buloh Nature Park. Singapore. https://web.archive.org/web/20111202005137/http://www.naturia.per.sg/buloh/plants/sea_poison.htm
and Benedict
Samling
Tanor, M. T., Abdul, L. A., Bambang, T. R., & Pelealu J. (2014). Isolation and identification of triterpenoid saponin from Barringtonia asiatica. The Journal of Tropical Life Science. 4(2), 119-122 doi:10.11594/jtls.4.2.%x
Tiwari, F., & Singh, D. F. (2004). Attraction to amino acids by Lymnaea acuminata, the snail host of Fasciola species. Brazilian Journal of Medical and Biological Research 37(4), 587–590.
Trease, G. E., & Evans, W. C. (2002). Pharmacognosy (15th ed.). Saunders Publishers.
Tripathi, S. M., & Singh, D. K. (2000). Molluscicidal activity of Punica granatum bark and Canna indica root. Brazilian Journal of Medical and Biological Research 33(11), 1351–135.
. Vimalkumar, C. S., Hosagaudar, V. B., Suja, S. R., Vilash, V., Krishnakumar, N. M., & Latha, P. G. (2014). Comparative preliminary phytochemical Analysis of ethanolic extracts of leaves of Olea dioica Roxb infected with the rust fungus Zaghouania oleae (E.J. Butler) Cummins and non-infected plants. Journal of Pharmacognosy and Phytochemistry 3(4), 69–72.
World Health Organization. Regional Office for the Western Pacific. (2009). Medicinal plants in Papua New Guinea. https://apps.who.int/iris/handle/10665/206954
World Health Organization. Regional Office for the Western Pacific. (1998). Medicinal plants in the South Pacific. https://apps.who.int/iris/handle/10665/207584
Yoon, Y., Lee, H., Lee, S., Hong, J., & Lee, C. (2015). Effects of lupenone, lupeol, and taraxerol derived from Adenophora triphylla on the gene expression and production of airway MUC5AC mucin. Tuberculosis and Respiratory Diseases 78(3), 210–217. doi: 10.4046/trd.2015.78.3.210